Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

S. Selvanayagam,^a D. Velmurugan,^a* K. Ravikumar,^b S. Narasinga Rao,^c M. Poornachandran^d and R. Raghunathan^d

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, ^cUniversity of Central Oklahoma, Edmond, Oklahoma, USA, and ^dDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.041 wR factor = 0.102 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

3'-(2-Chlorophenyl)-1'-methyl-4'nitrospiro[indan-2,2'-pyrrolidine]-1,3-dione

In the title compound, $C_{19}H_{15}CIN_2O_4$, the pyrrolidine ring adopts an envelope conformation. The five-membered ring in the indanedione moiety also adopts an envelope conformation. The dihedral angle between the chlorophenyl ring and the benzene ring of the indanedione moiety is 38.2 (1)°. The molecular structure is stabilized by intramolecular $C-H\cdots Cl$ and $C-H\cdots O$ interactions and the packing is stabilized by intermolecular $C-H\cdots O$ interactions.

Comment

The pyrrolidine skeleton occurs in many families of biologically important compounds. The resulting functionality, due to ease of substitution and therefore modification at several positions (Baldwin *et al.*, 1994*a*,*b*), has been utilized to synthesize compounds with varying properties. For example, several unusual amino acids, which contain the pyrrolidine motif, have been investigated (Galeazzi *et al.*, 1999). These derivatives possess anti-influenza virus (Stylianakis *et al.*, 2003) and anticonvulsant (Obniska *et al.*, 2002) activities. They are found to have antimicrobial and antifungal activities against various pathogens except *Bacillus subtilis* (Amal Raj *et al.*, 2003). In view of its medicinal importance, the crystal and molecular structure determination of the title compound, (I), was carried out by X-ray diffraction.

 NO_2

A displacement ellipsoid plot of (I) is shown in Fig. 1. The C–Cl bond length is comparable to the reported mean value of 1.739 (10) Å (Allen *et al.*, 1987). The bond lengths in the pyrrolidine ring are comparable to the values reported in related structures (Abdul Ajees *et al.*, 2002; Gzella & Wrzeciono, 1990; Usha *et al.*, 2003). All the bond lengths in the indanedione moiety are comparable to the values in related reported structures (Kendi *et al.*, 1995; Seshadri *et al.*, 2003).

(I)

ĊН

The sum of the angles at N1 of the pyrrolidine moiety [342.1°] is in accordance with sp^3 -hybridization and the sum of the angles at N23 [359.9°] is in accordance with sp^2 -hybridization.

The methyl group is attached equatorially to the pyrrolidine ring. The chlorophenyl ring and the benzene ring of the indanedione moiety are oriented at an angle of $38.2 (1)^{\circ}$ with

Received 19 October 2004 Accepted 21 October 2004 Online 30 October 2004

Figure 1

The molecular structure and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

respect to each other. The nitro group makes a dihedral angle of 71.8 (3)° with the chlorophenyl ring and 43.6 (2)° with the benzene ring of the indanedione moiety.

The pyrrolidine ring adopts an envelope conformation, with asymmetry parameters of $\Delta_s(C2) = 0.022(1), \Delta C_2(C5) =$ 0.052 (1) and $\Delta C_2(C4) = 0.080$ (1) (Nardelli, 1983). The fivemembered ring of the indanedione moiety adopts an envelope conformation, with puckering parameters of $q_2 = 0.172$ (2) Å and $\varphi = 172.3 (7)^{\circ}$ (Cremer & Pople, 1975). Atom C2 deviates by 0.276 (2) Å from the least-squares plane through the remaining four atoms. The keto O atoms O15 and O16 deviate from the mean plane through the ring by 0.562 (2) and 0.133 (2) Å, respectively.

The crystal structure is stabilized by intramolecular C- $H \cdots Cl$ and $C - H \cdots O$ interactions. In addition to the van der Waals interactions, the molecular packing in the crystal is stabilized by intermolecular $C-H \cdots O$ interactions (Fig. 2).

Experimental

A solution of ninhydrin (1 mmol), sarcosine (1 mmol) and 2-chlorophenylnitrostyrene (1 mmol) in aqueous methanol was refluxed on a water bath until the disappearance of the starting materials. The reaction mixture was then concentrated in vacuo and column chromatographed over silica gel with a hexane-ethyl acetate mixture (9:1) to obtain the title compound. The compound was recrystallized from methanol by slow evaporation.

Crystal data

$C_{19}H_{15}ClN_2O_4$	
$M_r = 370.78$	
Monoclinic, Cc	
a = 13.0966 (12) Å	
b = 8.6225 (8) Å	
c = 15.7306 (14) Å	
$\beta = 100.045 (1)^{\circ}$	
V = 1749.2 (3) Å ³	
Z = 4	

 $D_x = 1.408 \text{ Mg m}^{-3}$ Mo Ka radiation Cell parameters from 2598 reflections $\theta = 2.6 - 26.1^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 293 (2) KBlock, colourless $0.24 \times 0.20 \times 0.16 \text{ mm}$

The molecular packing of (I), viewed down the b axis. Dashed lines indicate hydrogen bonds.

Data collection

Bruker SMART APEX	3013 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.015$
ω scans	$\theta_{\rm max} = 27.9^{\circ}$
Absorption correction: none	$h = -16 \rightarrow 16$
5115 measured reflections	$k = -10 \rightarrow 9$
3199 independent reflections	$l = -20 \rightarrow 20$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0607P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 0.5297P]
$wR(F^2) = 0.102$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
3199 reflections	$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	Absolute structure: Flack (1983) 1228 Friedel pairs

Flack parameter = 0.04 (6)

Table 1

Selected geometric parameters (Å, °).

Cl1-C18	1.742 (3)	C4-C5	1.510 (4)
N1-C5	1.441 (4)	C7-O16	1.194 (3)
N1-C2	1.446 (3)	C14-O15	1.197 (3)
N1-C6	1.454 (4)	N23-O24	1.192 (3)
C3-C4	1.530 (3)	N23-O25	1.195 (3)
C5-N1-C2	109.9 (2)	C18-C17-C22	116.7 (2)
C5-N1-C6	115.5 (2)	O24-N23-O25	122.3 (3)
C2-N1-C6	116.7 (2)	O24-N23-C4	120.8 (2)
C17-C3-C4	116.0 (2)	O25-N23-C4	116.8 (2)
C17-C3-C2	114.9 (2)		
C6-N1-C2-C3	171.2 (2)	C6-N1-C5-C4	-156.7 (2)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
C3-H3···Cl1	0.98	2.59	3.081 (2)	111
C3-H3···O24	0.98	2.30	2.719 (3)	105
$C9-H9\cdots O15^{i}$	0.93	2.38	3.109 (3)	135
$C21 - H21 \cdots O16^{ii}$	0.93	2.60	3.248 (3)	127

Symmetry codes: (i) $\frac{1}{2} + x, \frac{1}{2} + y, z$; (ii) $x, -y, \frac{1}{2} + z$.

The H atoms were positioned geometrically and were treated as riding on their parent C atoms, with aromatic C–H distances of 0.93 Å, methyl C–H distances of 0.96 Å, methylene C–H distances of 0.97 Å and methine C–H distances of 0.98 Å, and with $U_{\rm iso} =$ $1.5U_{\rm eq}(C)$ for methyl H and $1.2U_{\rm eq}(C)$ for other H atoms.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL*97 and *PARST* (Nardelli, 1995).

SS thanks the Council of Scientific and Industrial Research (CSIR) for providing a Senior Research Fellowship. DV thanks the Department of Biotechnology (DBT) and University Grants Commission (UGC) for providing support under major research projects.

References

- Abdul Ajees, A., Manikandan, S. & Raghunathan, R. (2002). Acta Cryst. E58, 0802–0804.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.
- Baldwin, J. E., Mackenzie Turner, S. C. & Moloney, M. G. (1994a). Tetrahedron, pp. 9411–9424.
- Baldwin, J. E., Mackenzie Turner, S. C. & Moloney, M. G. (1994b). Tetrahedron, pp. 9425–9438.
- Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Galeazzi, R., Geremia, S., Mobbili, G. & Orena, M. (1999). *Tetrahedron Asymmetry*, **10**, 587–605.
- Gzella, A. & Wrzeciono, U. (1990). Acta Cryst. C46, 2107-2109.
- Kendi, E., Özbey, S., Ide, S., Fun, H.-K. & Yip, B. (1995). Acta Cryst. C51, 1144–1146.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Obniska, J., Zeic, A. & Zagorska, A. (2002). Acta Pol. Pharm. 59, 209-213.
- Seshadri, P. R., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sureshbabu, A. R. & Raghunathan, R. (2003). Acta Cryst. E59, o1783– 01785.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & DeClereq, E. (2003). *Bioorg. Med. Chem. Lett.* 10, 1699–1703.
- Usha, G., Selvanayagam, S., Yogavel, M., Velmurugan, D., Amalraj, A., Raghunathan, R., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). *Acta Cryst.* E**59**, 01572–01574.